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Abstract—With the rapid development of low-cost consumer
electronics and cloud computing, Internet-of-Things (IoT) devices
are widely adopted for supporting next-generation distributed
systems such as smart cities and industrial control systems. IoT
devices are often susceptible to cyber attacks due to their open
deployment environment and limited computing capabilities for
stringent security controls. Hence, Intrusion Detection Systems
(IDS) have emerged as one of the effective ways of securing
IoT networks by monitoring and detecting abnormal activities.
However, existing IDS approaches rely on centralized servers to
generate behaviour profiles and detect anomalies, causing high
response time and large operational costs due to communication
overhead. Besides, sharing of behaviour data in an open and dis-
tributed IoT network environment may violate on-device privacy
requirements. Additionally, various IoT devices tend to capture
heterogeneous data, which complicates the training of behaviour
models. In this paper, we introduce Federated Learning (FL) to
collaboratively train a decentralized shared model of IDS, without
exposing training data to others. Furthermore, we propose an
effective method called Federated Learning Ensemble Knowledge
Distillation (FLEKD) to mitigate the heterogeneity problems
across various clients. FLEKD enables a more flexible aggrega-
tion method than conventional model fusion techniques. Experi-
ment results on the public dataset CICIDS2019 demonstrate that
the proposed approach outperforms local training and traditional
FL in terms of both speed and performance and significantly
improves the system’s ability to detect unknown attacks. Finally,
we evaluate our proposed framework’s performance in three
potential real-world scenarios and show FLEKD has a clear
advantage in experimental results.

Index Terms—Intrusion Detection System, Federated Learn-
ing, Internet of Things, Knowledge Distillation, Data Hetero-
geneity

I. INTRODUCTION

In the era of digitalization, our daily life is gradually
changed by ubiquitous Internet of Things (IoT) devices. These
devices record and upload our personal information from day
to night, thus generating exponential data every day for every
person. By integrating with big data and edge computing
devices, a lot of promising applications have emerged, such as
intelligent industrial control systems and smart cities. Due to
the openness of the IoT network deployment environment and
the weak security control protocol operation ability caused by
limited computing capabilities, IoT devices are very vulnerable
to network attacks. Attackers may comprise edge devices or
databases through the network to steal or tamper with data,

Fig. 1. The overview of the FLEKD-IDS framework. ①: Train local model.
②: Transmit local models to server. ③: Fuse clients’ models. ④: Ensemble
knowledge distillation and fine-tune the global model. ⑤: Distribute the latest
global model.

causing great social and economic impact [1], [2]. Hence,
security monitor detection measures should be considered to
enhance IoT security.

As one of the most important security posture monitoring
tools, the Intrusion Detection System (IDS) has attracted
much attention in the context of IoT [3]. IDS can notify an
administrator of potential cyber attacks by analyzing network
traffic packets or system logs. Traditional IDS systems rely
on rule-based approaches [4] that are not effective to detect
novel attacks. Furthermore, big data is another challenge for
the rule-based IDSs. With the growth of IoT networks and
increasing complexity of attacks, Machine Learning (ML)
and Deep Learning (DL) methods have emerged as effective
techniques for constructing automatic IDSs [5], [6]. These
techniques enable the system to learn from vast amounts
of behaviour data, establish specific models efficiently, and
identify attacking patterns that are difficult to detect manually.

However, the use of ML and DL in IDS for IoT networks
comes with its own set of challenges. First, training models
by local devices themselves will lead to poor performance
because of the constrained computation ability and insufficient
data. Second, the communication overhead is large and will
cause privacy concerns to transferring raw data of all devices
to a central server for collaborative training. Another challenge
is handling the heterogeneous data collected by different
devices [7]. The data distribution, number of samples, and
collection time on each edge device may be different. Besides,



due to system updates or different device functions, the feature
dimensions and attack types of data collected from different
devices/clients may also be inconsistent. This heterogeneity
further complicates the centralized ML and DL models for
IoT security detection.

To address the first two concerns, we utilize an on-device
privacy-preserving distributed machine learning paradigm,
Federated Learning (FL). Instead of sharing local privacy
datasets directly, FL can collaboratively train a global IDS
model by transmitting local model parameters. Then, the
central server aggregates local model parameters into a global
one. Finally, the central server will dispatch the updated
parameters to all local clients. The model will stop after
the specified number of such communication synchronization
rounds or after the model converges.

To mitigate the negative impacts, including slow model
convergence speed, poor model prediction ability, etc, brought
by data heterogeneity on diverse devices, we propose an
effective heterogeneous federated learning framework using
ensemble knowledge distillation (FLEKD), as shown in Fig-
ure 1. Our scheme leverages mutually exclusive and unlabeled
data to aggregate and transfer knowledge from all received
heterogeneous client models toward a global model. This
ensemble knowledge distillation technique allows a flexible
aggregation method that can reduce the impact of clients’
heterogeneity while not disclosing users’ privacy and also can
accelerate the model convergence speed. Empirical experiment
results demonstrated that our proposed framework can not only
achieve accurate and timely intrusion detection but also narrow
the knowledge gaps among heterogeneous clients. Our main
contributions are summarized as follows:

• We introduce an FL framework to develop an on-device
collaborative deep intrusion detection model for edge
devices in IoT networks.

• We propose a dynamic weight ensemble knowledge dis-
tillation scheme (FLEKD) to assist in mitigating the neg-
ative influence of clients’ heterogeneity without violating
users’ personal privacy.

• We conduct extensive experiments on the public dataset
CICIDS2019 to demonstrate better detection performance
and improved ability to identify unknown attacks over
local training models and naive FL global models.

• We assess the performance of our proposed framework in
three possible real-world scenarios, namely, diverse data
features, sample quantity, and missing certain classes. Our
experimental results demonstrate that FLEKD exhibits
clear and strong advantages.

II. BACKGROUND AND RELATED WORK

A. Intrusion Detection System

The Intrusion Detection System (IDS) is a critical cyberse-
curity tool that plays a vital role in safeguarding the security
and integrity of networked systems. By monitoring network
traffic packets or system logs, IDS can identify anomalous
behaviour or patterns that may indicate unauthorized use,

misuse, or abuse [1] and alert system administrators of poten-
tial security breaches in real-time. IDS also performs critical
impact in the context of IoT security [8]. Traditional IDSs are
rule-based or signature-based, which are effective for detecting
known threats [4]. However, they may not be as advanced as
ML-based and DL-based IDSs in analyzing large volumes of
data in an efficient manner and detecting emerging attacks [5],
[6]. In recent years, there are also research efforts investigating
emerging ML or DL paradigms to improve specific perfor-
mance of IDS models, such as improving model adaptability
to handle heterogeneous data by collaborative learning [9]
and reducing data annotation pressure by weakly supervised
learning [10].

B. Federated Learning for Intrusion Detection

Federated learning is designed for collaborative training of
aggregated models with multiple devices or nodes without
sharing raw data [11]. FL is a distributed paradigm that has
the following advantages over centralized ML and DL models:

• Keep raw data in the owner: In FL, devices/clients can
maintain data privacy by training local models without
sharing their own data with the central server.

• Mitigate data scarcity: FL can access a much larger and
more diverse dataset, which can help overcome issues re-
lated to limited data on some devices. The generalization
ability of the aggregated model and the prediction ability
of unknown items for the clients will be improved.

• Train with heterogeneous data: FL makes it possible
to train models with large quantities of diverse data
(features, sample quantity, and distribution, as well as
the types of data that may be different) from multiple
sources.

FL has demonstrated its usefulness in the development of
models to combat unknown attacks [12], achieve efficient
anomaly detection [13], [14], and realize privacy-enhancing
FL-based intrusion detection [15], [16]. Moreover, FL has con-
tributed to the development of various other IDSs, highlighting
its potential as a valuable approach in the field of cybersecurity
and IoT security [7], [17].

A practical challenge of FL models is to maintain high
performance when dealing with heterogeneous data collected
from different devices. However, a limited number of FL-
IDS models have comprehensively considered this issue. Local
model heterogeneity brought about by heterogeneous data will
cause these problems: 1) slow convergence, 2) bias in the
model, and 3) poor model accuracy. Therefore, in this paper,
we propose an effective and efficient FL framework to address
the data heterogeneity (diverse feature dimensions, sample
quantity and distribution, and different types of data) for IDS
in IoT security.

III. AN EFFECTIVE HETEROGENEOUS INTRUSION
DETECTION SYSTEM FRAMEWORK

A. Knowledge Distillation

Knowledge distillation, first proposed by Hinton [18], al-
lows transferring the knowledge of a large, complex model



(known as the teacher) to a smaller, simpler model (known
as the student). The motivation behind knowledge distillation
is to train the student model to mimic the behaviour of the
teacher model. The process of knowledge transfer usually
needs a proxy dataset as the medium. As a result, most of
the works will choose a mutually exclusive dataset while
some others may use an autoencoder or GAN to generate
some synthetic dataset. Once the proxy dataset is chosen, the
class probabilities of the model’s last layer (logits) or feature
representations of middle hidden layers (feature maps) are
usually used as the soft targets for knowledge transfer. The
reason is that they contain more valuable information than the
hard labels used in normal training.

For the original knowledge distillation, loss typically con-
sists of two terms: a standard cross-entropy loss term and a
distillation loss term. The former uses the hard label as the
target while the latter uses a soft target. For the federated
learning scenario, we usually do not have the publicly labelled
dataset. Therefore, the combined loss is reduced to only
the distillation loss term. The distillation loss term is often
formulated as the Kullback-Leibler (KL) divergence between
the teacher and student’s softmax output probabilities, shown
in Equation (1).

σ(zi) =
exp (zi/T )∑
j exp (zj/T )

LKL(S∥T ) =
∑

Si(σ(z)) log

(
Si(σ(z))

Ti(σ(z))

) (1)

where S and T represent the student and teacher logits
respectively. σ is the softmax function and a temperate T is
added.

B. FLEKD: Using Ensemble Knowledge Distillation for IDS
in Heterogeneous IoT Networks

We introduce federated learning as a privacy-preserving
collaborative training paradigm for the IDS model. The con-
ventional FL algorithm commonly involves three steps: First,
synchronizing the current global model parameters to maintain
consistency among each client. Second, updating the local
model parameters on private data using Adam or SGD as
optimizer. Third, transmitting the models of each client to
the server side and integrating them by using a specific
aggregation algorithm in Equation (2).

Wt+1 = Wt +
1

Ct

Ct∑
i=1

F i
t+1 (2)

where 1
Ct

∑Ct

i=1 F
i
t+1 denotes the average aggregation of client

models F i
t+1. These three steps constitute a loop until the

global model converges, as shown in steps 3-8 of Algorithm 1.
Usually, average or weighted average algorithms are

used for server-side aggregation. However, many research
works [19], [20] suggest that this may not be the best aggre-
gation mode, especially on heterogeneous data. In fact, simple
averaging algorithms result in the loss of a lot of useful infor-
mation from client models. Specifically, due to the imbalance

in data distribution, some clients may be better at detecting
certain attack patterns but not others. After aggregation, it
is highly likely that the classification boundaries that were
originally clear for certain categories become fuzzy, which
affects the overall detection performance [21]. Therefore, this
work aims to better utilize the effective information from each
client to further improve the generalization and performance
of the server model after aggregation.

Our proposed FLEKD method, shown in Figure 1, can
effectively utilize heterogeneous IDS data. To be specific, we
combine the idea of one-to-many knowledge distillation with
federated learning, using the server-side model obtained by
simple aggregation as the student model, and client models
as the teacher models. The student model acquires knowledge
from logits ensembled overall the received teacher models, and
thus mutually beneficial information can be shared. In the next
round, each activated client receives the corresponding fused
prototype model.

In one-to-many knowledge distillation, we propose to use
an ensemble method to compress the knowledge of the teacher
model. Specifically, we propose a dynamic weight ensemble
method. We first test each client model to obtain its score on
the test set. Then, we perform a Softmax operation on the
test scores, with the addition of a deterministic temperature to
enlarge the difference between clients and increase the teacher
knowledge’s reliance on higher-scoring clients. Therefore, the
dynamic weight for each client at this round is generated. Fi-
nally, we perform a matrix multiplication between the dynamic
weights and the logits from each client, shown in Equation (3),
to obtain the final ensemble knowledge.

Clienti =
exp (acci/DT )∑
j exp (accj/DT )

EKD = Client× logits

(3)

After acquiring the ensemble knowledge distillation, similar
to the original KD, we use KL divergence to fine-tune the
server-side model, as detailed in steps 9-13 of Algorithm 1.

Notably, as federated learning requires each client to upload
its own model to the server, our proposed method does not
impose additional burdens or communication overhead.

IV. EXPERIMENTS

A. Experiment Setup

Dataset and model. We perform our experiments on the
CICIDS2019 dataset. It contains normal and the latest common
DDoS attack events, similar to real data (PCAPs). It also
includes network traffic analysis results using CICFlowMeter-
V3, which is based on timestamp, source and destination IP,
source and destination port, protocol and attacking tag stream.
According to the feature dimensions of CICIDS2018 and 2017,
we split the dataset into three groups, clients 0-2 with 82
full feature dimensions, clients 3-5 with 79 dimensions, and
clients 6-8 with only 24 dimensions. Note that the number of
UDPLag attack samples in the original CICIDS2019 dataset



Algorithm 1: Federated Learning with Ensemble Knowledge Distillation
Input: Proxy IDS dataset (unlabeled) D0, private IDS datasets (labeled) DK , initialize clients models Wi, the number of data

points per client ni.
Output: Trained server model WG

1 for each communication round t = 1 to T do
2 Select a subset of clients Ct to participate in the round;
3 for each client i in Ct do
4 Synchronize the current global model WG to client i;
5 Update a local model Wi using client i’s private dataset DK ;
6 Transmit the client models Wi to the central server;
7 end
8 Model Fusion: The server computes an updated consensus, which is an average of client models parameters

WG =
∑

i∈Ct

ni∑
i∈Ct

ni
Wi;

9 Ensemble Knowledge Distillation:
10 Student: Calculate the logit vectors of server model xs

t based on the proxy dataset D0;
11 Teacher: Calculate the logit vectors of client models based on the proxy dataset D0. Use ensemble algorithm based on

Equation (3) to get the final teacher knowledge x̂k
t ;

12 Fine-tune the global model WG using Kullback-Leibler divergence L = KL(xs
t , x̂

k
t );

13 end
14 end
15 Return WG

is extremely small, about twenty-third of the number of other
categories.

For the model selection, we use the naive MLP neural
network directly. Our network contains three layers and the
hidden neuron is set to 128. We use ReLU as the activation
function. All the clients’ model is initialized with the same
random parameters.

Heterogeneous distribution of client data. To simulate a
realistic and practical environment, we introduce heterogeneity
in the distribution of client data. We adopt the use of the
Dirichlet distribution, as proposed in previous studies such
as [22]. In this approach, we create disjoint non-i.i.d. client
training data. The parameter α is used to control the degree
of non-i.i.d. For example, setting α to 100 can mimic identical
local data distributions, while smaller α values result in more
heterogeneous data distributions.

Parameters setting. In the federated learning process, the
client number is set to 9. According to the client number, every
three clients have private data sets of the same dimension. We
conduct two rounds of local training before the communication
with the server side. We use Adam as the optimization and set
the learning rate to 0.001 with a uniform decay strategy of five
per cent. In the ensemble knowledge distillation process, we
first need to generate a proxy dataset. The proxy dataset con-
tains 1260 samples. We adopted a uniform sampling method,
so the samples contained in each category except UDPLag
are basically consistent, while the UDPLag is about a third of
the number of other attacks. We set the temperature at 1.5 for
knowledge distillation. For the ensembling weights, we set the
deterministic temperature to 0.5 to enlarge the discrepancy of
each client. Similarly, we also use Adam as the optimization
and set the learning rate to 0.001 with a decay strategy of five
per cent for each epoch.

B. Performance of Proposed Framework
In Table I, we present our main result. The table shows

the performance of our model using three different sample
parameters for the Dirichlet distribution: α = 10, 1, and
0.5. The first part of the table displays the performance of
the local training process conducted by each client on their
private dataset. We observe that as the data becomes more
heterogeneous, there is a significant decrease in the F1-score
of each client. In fact, when α is set to 0.5, some clients exhibit
completely incorrect predictions for certain classes. This is
due to the non-i.i.d. nature of the private datasets, which may
result in some clients having an imbalanced amount of data
and experiencing underfitting. This can lead to a decrease in
the prediction accuracy for other classes as well. Therefore,
when the problem of imbalanced data occurs in on-device local
training, it can easily lead to a significant decrease in the IoT
device’s prediction performance.

Fig. 2. Error rate of the server-side model on the test set.

However, by introducing distributed training, as shown in
the second part of Table I, the predictive performance can be
improved significantly. For example, in the case of UDPLag,
a class with very few examples, an F1-score of 95.40% can be
achieved with α set to 0.5. This is a large improvement com-



TABLE I
MAIN RESULTS. CLIENTS 0-8 CONDUCT LOCAL TRAINING AND ALL THE SCORES ARE CALCULATED BY F1-SCORE.

Local

Training

Portmap LDAP MSSQL NetBIOS Syn UDP UDPLag

α = 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5

Client 0 99.89% 99.74% 70.08% 99.83% 99.78% 0.00% 99.96% 99.85% 99.97% 99.84% 99.69% 99.54% 99.91% 99.90% 99.92% 99.98% 99.96% 92.73% 97.27% 96.77% 97.99%

Client 1 99.88% 99.89% 99.51% 99.86% 99.80% 96.59% 99.96% 99.97% 95.78% 99.88% 99.83% 99.72% 99.93% 99.94% 98.78% 99.98% 99.92% 99.96% 97.52% 98.42% 0.00%

Client 2 99.92% 99.82% 99.66% 99.94% 99.92% 99.83% 99.93% 99.93% 99.71% 99.94% 99.87% 99.81% 99.93% 99.90% 99.87% 99.99% 100.00% 99.46% 97.30% 97.03% 76.48%

Client 3 99.81% 99.60% 98.96% 99.17% 99.76% 96.76% 99.89% 99.95% 99.92% 99.80% 99.51% 98.70% 99.92% 99.89% 99.93% 99.29% 99.90% 99.94% 97.01% 97.11% 56.63%

Client 4 99.84% 2.30% 64.93% 99.92% 99.86% 99.77% 99.90% 66.47% 94.97% 99.89% 77.55% 0.00% 99.92% 99.90% 99.11% 99.99% 99.86% 99.73% 97.40% 94.12% 67.13%

Client 5 99.83% 99.97% 98.91% 99.90% 99.90% 83.64% 99.93% 99.98% 98.77% 99.89% 99.90% 99.52% 99.87% 99.92% 99.86% 99.96% 99.99% 75.67% 97.03% 97.63% 89.07%

Client 6 90.65% 95.13% 8.94% 99.78% 99.84% 99.29% 80.23% 67.99% 2.42% 93.57% 39.35% 52.28% 99.83% 99.84% 98.95% 99.99% 99.99% 99.91% 93.55% 93.28% 46.65%

Client 7 94.86% 14.50% 32.67% 99.84% 99.89% 99.71% 89.36% 21.53% 13.57% 95.19% 70.78% 53.99% 99.81% 99.90% 99.05% 99.91% 99.99% 99.99% 94.22% 93.05% 54.84%

Client 8 97.19% 91.88% 96.53% 99.82% 99.58% 94.26% 93.11% 84.77% 0.00% 95.94% 95.06% 68.50% 99.89% 99.92% 99.82% 99.94% 99.90% 97.11% 93.31% 95.59% 49.36%

Distributed

Training

Portmap LDAP MSSQL NetBIOS Syn UDP UDPLag

α = 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5 10 1 0.5

FL 99.00% 99.45% 99.54% 99.67% 99.64% 99.83% 99.98% 99.86% 99.62% 98.97% 99.57% 99.73% 99.93% 99.93% 99.88% 99.87% 99.78% 99.99% 97.55% 97.21% 95.40%

FLEKD 99.80% 99.73% 99.77% 99.84% 99.70% 99.91% 99.99% 99.98% 99.90% 99.82% 99.73% 99.86% 99.94% 99.93% 99.92% 99.91% 99.88% 99.99% 98.34% 97.64% 96.62%

pared to the results obtained from local training, where clients
1, 6, and 8 achieved less than 50% accuracy. Furthermore, F1-
score improves in various other intrusion attack scenarios. Our
proposed EKD fine-tuning further enhances the performance
of our central model and accelerates the convergence rate. For
each setting, the number of communication rounds required to
achieve a 95% F1-score was reduced by one when using the
FLEKD method. This improved efficiency is further illustrated
in Figure 2, where the convergence speed of FLEKD is
noticeably faster than that of the original FL under the same
conditions, allowing for faster achievement of optimal final
results, which demonstrates the effectiveness of using FLEKD.

C. Analysis

In this paper, we focus on evaluating the effectiveness of
our proposed method in the context of an intrusion detection
system in IoT security. To this end, we consider three key
scenarios that are likely to arise in practice and investigate the
performance of our method under each of them. Specifically,
we examine the impact of (1) varying dimensions of the data,
(2) different sample sizes, and (3) different attack category
distributions in various clients. Through our experiments, we
demonstrate the superiority of our approach in these scenarios.

The impact of different dimensions. We consider the
possibility that data collected from different time periods
may have varying dimensions, for instance, the CICIDS2017
dataset contains only 24 feature dimensions compared to
CICIDS2019 with 82 dimensions. In real-world application
scenarios, it is necessary to combine data collected from
different IoT devices for training. We present three scenarios in
Table II, where we compare the results of training with datasets
of different dimensions locally and with federated learning.
Our results show that when the available feature vectors are
reduced to 24 dimensions, there is a significant decrease in
performance, with F1-score dropping from the original 96.02%
to 84.71% using only local training. However, when we apply

TABLE II
THE IMPACT OF DIFFERENT DIMENSIONS.

Precision Recall F1-score

82 dim 95.93% 96.39% 96.02%
79 dim 86.31% 86.75% 86.17%
24 dim 84.17% 85.48% 84.71%

FL 99.37% 99.36% 99.37%
FLEKD 99.80% 99.80% 99.80%

federated learning and our proposed method of ensemble
knowledge distillation, we achieve a significant improvement
in accuracy, with a score of 99.80%. This indicates that
FLEKD can effectively solve the problem of dimensionality
differences in IoT device data.

The impact of different sample sizes. Due to the charac-
teristics of network attacks, which may occur in short periods
with high frequency and target certain vulnerable devices,
there may be significant differences in the number of samples
between IoT devices. Therefore, we divided the dataset into
three groups of clients with different sample sizes. Specifically,
the number of samples in each group differs by a factor of
ten, with the group containing the least number of samples
represented as ‘Base’. In Table III, we observe a negative
correlation between the number of samples and the detection
performance when using local training only. We achieved the
best performance of 99.50% on 100∗Base. However, due to
the lack of communication between different clients, the base
model was not able to benefit from the larger number of sam-
ples in 100∗Base, and only achieved an F1-score of 84.71%.
When we used FLEKD to aggregate and optimize the models
of different clients, the final F1-score reached 99.80%, which
is higher than all results obtained by local training and ordinary
FL. This demonstrates that FLEKD can effectively address
the sample size differences between different IoT devices and
significantly improve intrusion detection performance.



TABLE III
THE IMPACT OF DIFFERENT SAMPLE SIZES.

Precision Recall F1-score

Base 84.17% 85.48% 84.71%
10*Base 92.97% 88.55% 87.25%

100*Base 99.51% 99.50% 99.50%

FL 99.37% 99.36% 99.37%
FLEKD 99.80% 99.80% 99.80%

The impact of different attack category distributions.
In real-world scenarios, different IoT devices usually own
heterogeneous data distributions. It is common to encounter
unknown attacks but traditional centralized IDSs unable to
identify novel attacks effectively. Hence, in our experiments,
we simulated the situation where each IoT device holds a
different data distribution. There are seven classes of attacks
in the CICIDS2019 dataset, so we set up seven local clients,
each device missing a specific category of attack. As shown in
Table IV, it is evident that all clients failed to detect the lacking
attack. However, the detection abilities for unknown attacks
of the FL-based and FLEKD-based IDS models are high. The
overall detection performance of the proposed method for all
attacks is also significantly improved. By adopting FLEKD,
we find that even the most difficult-to-detect ‘UDPLag’ can
reach 80.86%, while other corresponding attack categories can
be improved to about 99%. This demonstrates that FLEKD-
based IDS can effectively deal with the category heterogeneity
problem, enabling different devices to identify attacks they
have not seen before.

TABLE IV
THE IMPACT OF DIFFERENT ATTACK CATEGORY DISTRIBUTIONS.

0: Portmap 1: LDAP 2:MSSQL 3:NetBIOS 4: Syn 5: UDP 6: UDPLag

Drop Label 0 0.00% 98.72% 59.09% 95.62% 99.67% 95.10% 0.00%

Drop Label 1 99.30% 0.00% 66.45% 99.62% 99.91% 99.98% 94.95%

Drop Label 2 66.77% 99.96% 0.00% 99.75% 99.95% 99.99% 96.81%

Drop Label 3 91.06% 97.03% 54.03% 0.00% 99.68% 95.84% 0.00%

Drop Label 4 75.76% 99.69% 94.54% 95.72% 0.00% 99.90% 11.05%

Drop Label 5 99.74% 66.62% 99.78% 99.83% 99.92% 0.00% 97.47%

Drop Label 6 91.21% 97.93% 0.00% 72.35% 99.65% 94.46% 0.00%

FL 99.05% 99.80% 94.37% 97.31% 99.92% 98.85% 75.28%

FLEKD 99.66% 99.88% 98.97% 99.80% 99.94% 99.97% 80.86%

V. CONCLUSION

In this work, we introduce federated learning towards IDS in
IoT networks to address the privacy issue and central training
problem. For non-i.i.d. situations, We propose FLEKD to mit-
igate the negative influence of clients’ heterogeneity without
increasing additional communication overhead. Our proposed
framework FLEKD outperforms the local training and original
FL results in both speed and performance on the CICIDS2019
dataset. Besides, FLEKD exhibits clear superiority in handling
heterogeneous data and achieves better results over three real-
world scenarios. Overall, our work offers a promising solution
for IoT networks’ security.
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