
A survey about Explainable AI 

1 Definition 
Interpretability is the degree to which a human can consistently predict the model’s result.  

2 Importance 
2.1 Premise 
Precise and interpretability are two mutually exclusive directions. For a problem, white-box models like 
machine learning methods (linear regression or decision tree) are easy and direct to understand, however, 
may not perform well under some tricky situations. On the other hand, black-box models like neural 
network or random forest are better at dealing with hard questions, but their interpretability definitely drop 
a lot.  

 

As a result, accuracy and interpretability cannot be achieved to a high degree both. It is actually a tradeoff 
between these, and explainable AI is to explore this balance boundary. 

2.2  Why needs interpretability 
• Human curiosity and learning: find meaning about the model 
• From qualitative to quantitative: goal of science is to gain knowledge 
• Real world requires safety measures and testing: e.g., self-driving car 
• Eliminate biases from the training data: DL models are likely to learn the biases from the dataset 
•  

3 Taxonomy of interpretability methods 
Methods for XAI (Explainable AI) can be classified according to various criteria. 

3.1 Intrinsic or post-hos 
• Build interpretable ML models 
• Derived explanations for complex ML models 



3.2 Agnosticity 
• Model-agnostic: applicable to all model types 
• Model-specific: only applicable to a specific model type 

3.3 Scope 
• Global explanation 
• Local explanation 

3.4 Data types 
• Tabular 
• Image 
• Text / speech 

3.5 Explanation types 
• Visualization 
• Feature importance 
• Data points 
• Surrogate models 

4 Interpretable ML models 
Linear regression, logistic regression, decision tree, RuleFit, Naïve Bayes classifier, KNN, etc. 

5 Model-agnostic methods 
The desirable result of the model-agnostic interpretability. Detailed steps are shown in the image below. 

 



Model-agnostic interpretation methods can be further distinguished into local and global methods. Global 
methods describe how features affect the prediction on average. In contrast, local methods aim to explain 
individual predictions. 

The list of the model-agnostic methods is shown below: 

 

5.1 Global model-agnostic methods 
5.1.1 Partial Dependence Plot (PDP) 
Actually, it is a very naïve and intuitive method. A partial dependence plot can show one or two features 
of marginal effect on the predicted outcome. PDP demonstrates whether the relationship between the target 
and a feature is linear, monotonic or more complex.  
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where 𝑓!"(𝑥") means averages of the prediction under 𝑥", 𝑥" refers to the interested feature and 𝑥#  are the 
rest features that we disinterested.  

The visualization result is like the followed. 



 

5.1.2 Accumulated Local Effects Plot (ALE) 
Similar to the PDP, they reduce the complex prediction function 𝑓 to a function that depends on only one 
or two features. However, ALE plots average the changes in the predictions and accumulate them over the 
grid.  

 

 

5.2 Local model-agnostic methods 
5.2.1 LIME 
5.2.1.1 Overview 
In the paper 1 , author proposes a concrete implementation of local surrogate models (like a Linear 
Regression model) to approximate the predictions of the underlying black box model.  

The learned model should be a good approximation of the machine learning model predictions locally, but 
it does not have to be a good global approximation. This kind of accuracy is also called local fidelity. 

 
1 Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions 
of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and 
data mining. 2016.(https://arxiv.org/abs/1602.04938v3) 



 

Steps can be described as follow: 

1. Consider the individual input 
2. Give small perturbation to the input, so can generate a huge partially similar but different data 
3. Use these new datasets to train a interpretability model (listed in the chapter 4) 

After these several steps, the interpretability model can explain why some outputs are different from others 
given to partially similar but different inputs.  

Mathematically, local surrogate models with interpretability constraint can be expressed as follows: 

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = arg𝑚𝑖𝑛 𝐿(𝑓, 𝑔, 𝜋!) + Ω(𝑔) 

𝑓 refers to black-box model, 𝑔 refers to the white-box model. 𝜋! measures how large the neighborhood 
around instance 𝑥.	Ω(𝑔) is the hyper-parameters to be defined by practice in order to make the explainable 
model simple enough. 

5.2.1.2 Implementation scope 
For text and images, the solution is to turn single words or super-pixels on or off. In the case of tabular 
data, LIME creates new samples by perturbing each feature individually, drawing from a normal 
distribution with mean and standard deviation taken from the feature. 

• Turn single words: randomly removing words from the original text 
• Super-pixels: segmenting the image into super-pixels and turn it on-or-off 

 
5.2.1.3 Disadvantages 
• Definition of neighborhood scale 
• Instability of the explanations: tow very close points varied greatly in a simulated setting2 

5.2.1.4 Conclusion 
Local surrogate models, with LIME as a concrete implementation, are very promising. But the method is 
still in development phase and many problems need to be solved before it can be safely applied. 

 
2 Alvarez-Melis, David, and Tommi S. Jaakkola. "On the robustness of interpretability methods." arXiv preprint 
arXiv:1806.08049 (2018).(https://arxiv.org/pdf/1806.08049.pdf) 



5.2.2 Shapley Additive exPlanations (SHAP) 
5.2.2.1 Overview 
In the paper3, authors propose a method to explain individual predictions, which is based on the game 
theoretically optimal Shapley Values. SHAP has a solid theoretical foundation in game theory. The 
prediction is fairly distributed among the feature values. We get contrastive explanations that compare 
the prediction with the average prediction. 

The Shapley value is the average marginal contribution of a feature value across all possible coalitions. 
For example, the interpretation of the Shapley value for feature value 𝑗 is: The value of the 𝑗-th feature 
contributed Φ* to the prediction of this particular instance compared to the average prediction for the dataset. 

In specific, the Φ* can be calculated as followed: 

Φ*(𝑓, 𝑥) = 	 (
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where 𝑧+ is a subset of the features used in the model, 𝑗 is the vector of feature values of the instance to be 
explained and 𝑀 the number of features. 𝑓!(𝑧+) and 𝑓!(𝑧+\𝑗) is the prediction for feature values in set 𝑧+ 
that are marginalized over features that are not included in set 𝑧+. 

Additionally, when calculating different permutation, we can use some methods to decrease the complex 
computation like kernel SHAP, Tree SHAP, etc. 

Last but not least, with the help of tree-based implementation, SHAP can also achieve the global 
interpretability, which include feature importance, feature dependence, interactions, clustering and 
summary plots. 

5.2.2.2 Implementation scope 
Like the LIME, for image using the super-pixels, for text using randomly choose word permutation.  

5.2.2.3 Conclusion 
There are various improvements based on the fundamental Shapely values, which to some extent solve 
problems like slow compotation or feature dependence partially. Despite these, it is still a relatively fair 
method to assign the prediction to individual features. 
 
5.2.3 Counterfactual explanations 
Unlike the above two that are attribution methods, counterfactual explanations4 are example-based one. 
Counterfactual explanations explain a prediction by examining which features would need to be changed 
to achieve a desired prediction. 

The objective function can be described as followed: 

argmin 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑥+), 𝑤ℎ𝑖𝑙𝑒	𝑓(𝑥) = 𝐶, 𝑠. 𝑡.		𝑓(𝑥+) = 𝐶+ 

 
3 Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Advances in neural 
information processing systems 30 (2017). 
(https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf) 

4 For the detail, can check here: https://christophm.github.io/interpretable-ml-book/counterfactual.html   



where 𝑥+ refers to the minimized modification of the original input x that can make the prediction to the 
other side. 

6 Neural network interpretation 
For DNN, most methods are model-specific. In CV field, normal methods are like guided backpropagation, 
integrated gradients, SmoothGrad saliency maps, Grad-CAM, Concept activation vectors. Others are like 
knowledge distillation, dimensionality reduction and tree regularization. 

6.1 Layer-wise relevance propagation (LRP) 
It evaluates each layer neurons contribute to the maximum predicted outcome. The formula for calculating 
the importance of each layer’s neurons is as followed: 
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6.2 Pixel attribution (saliency maps) 
Pixel attribution is a special case of feature attribution, but most for images. Feature attribution explains 
individual predictions by attributing each input feature according to how much it changed the prediction 
(either positively or negatively). 

There is a confusing amount of pixel attribution approaches and mostly there are tow different types of 
attribution methods: 

• Occlusion- or perturbation-based: methods like SHAP and LIME manipulate parts of the image to 
generate explanations 

• Gradient-based: the explanation has the same size as the input image (or at least can be 
meaningfully projected onto the original image) and they assign each pixel a value that can be 
interpreted as the relevance of the pixel to the prediction or classification of that image. Examples 
of gradient methods are like Vanilla Gradient and Grad-CAM. 



6.2.1 Vanilla gradient 
Algorithm steps of Vanilla Gradient5: 

1. Forward pass with data 
2. Backward pass to input layer to get the gradient 
3. Render the gradient as a normalized heatmap 

Backpropagation normally stops at the second layer during training for efficiency as input cannot be 
changed. Crucially, however, Vanilla Gradient continues to backprop to the input layer to see which 
pixels would affect our output the most. The backpropagation step here gives us good saliency clues because 
it calculates the gradient of the given output class with respect to the input image. The gradient is just a list 
of derivatives, one for each pixel. 

 

The red parts mean the positive influence and blue one refers to the negative. 

Also, there is something needed to be considered about color render. The original Vanilla Gradient paper 
used a white-spectrum colormap, while the above picture use a red-white-blue colormap. The advantage of 
a diverging colormap such as red-white-blue is that we can better capture the difference between positive 
and negative values. This is useful in white-digit-on-black-background MNIST, as positive derivatives 
indicate positive probability impact (and vice versa). However, in ImageNet it turns out that the implication 
of signage is context-dependent, so researchers have found the absolute value of the gradient and sequential 
color maps like white-spectrum to be most clear. 

6.2.2 Grad-CAM 
Grad-CAM6 provides visual explanations for CNN decisions. Unlike other methods, the gradient is not 
backpropagated all the way back to the image, but (usually) to the last convolutional layer to produce a 
coarse localization map that highlights important regions of the image.  

Grad-CAM analyzes which regions are activated in the feature maps of the last convolutional layers. And 
then, the heatmap is send through the ReLU function so it removes all negative values because we are only 
interested in the parts contributing to the selected class. 

 
5  Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. "Deep inside convolutional networks: Visualising image 
classification models and saliency maps." arXiv preprint arXiv:1312.6034 (2013). (https://arxiv.org/pdf/1312.6034.pdf) 

6 Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." 
Proceedings of the IEEE international conference on computer vision. 2017. (https://arxiv.org/pdf/1610.02391.pdf) 



 

where 𝑢 is the width, 𝑣 is the height of the explanation and 𝑐 is the class of interest. 

6.2.3 Guided Grad-CAM 
From the description of Grad-CAM we can find that the localization is very coarse, since the last 
convolutional feature maps have a much coarser resolution compared to the input image. In contrast, other 
attribution techniques backpropagate all the way to the input pixels. They are therefore much more detailed 
and can show you individual edges or spots that contributed most to a prediction. A fusion of both methods 
is called Guided Grad-CAM. And it is super simple. We compute for an image both the Grad-CAM 
explanation and the explanation from another attribution method, such as Vanilla Gradient. The Grad-CAM 
output is then upsampled with bilinear interpolation, then both maps are multiplied element-wise. Grad-
CAM works like a lense that focuses on specific parts of the pixel-wise attribution map. 

6.2.4 SmoothGrad 
The idea of SmoothGrad by Smilkov et al. (2017)7 is to make gradient-based explanations less noisy by 
adding noise and averaging over these artificially noisy gradients.  
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SmoothGrad is not a standalone explanation method, but an extension to any gradient-based explanation 
method. 

SmoothGrad works in the following way: 

1. Generate multiple versions of the image of interest by adding noise to it. 
2. Create pixel attribution maps for all images. 
3. Average the pixel attribution maps. 

6.2.5 Conclusion 
Gradient-based methods are much faster to compute than model-agnostic methods and the explanations 
are visual so that sometimes we can easily recognize images.  

However, it may also have some disadvantages. As there are no ground truth for the explanations, we 
even cannot tell whether one visualized image is correct or not. Instead, we can only, in a first step, reject 
explanations that obviously make no sense.  

Also, the saliency methods are highly unreliable and fragile, which means that introduce small 
perturbations or constant shift may lead to different highlighted area as explanation.  

Additionally, some methods may be insensitive to model and data. These means that the method will 
always highlight the edge of the object and are unrelated to a prediction model or abstract features of the 
image, which means does not requires training any more. What’s more. The most importance is that we 
need a fair evaluation metrics to scrutinize various methods. 

 
7 Smilkov, Daniel, et al. "Smoothgrad: removing noise by adding noise." arXiv preprint arXiv:1706.03825 (2017). 
(https://arxiv.org/pdf/1706.03825.pdf) 



 


